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Fluctuations in Fluids out of Thermal Equilibrium 
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After a brief review of dynamic correlations in equilibrium fluids, we consider 
the long-range correlations between the fluctuations in a fluid subjected to a 
large stationary temperature gradient. These long-range correlations enhance 
and modify the Rayleigh spectrum of the fluid. We elucidate that the modi- 
fications of the Rayleigh line are determined by the coupling of the entropy 
fluctuations to the transverse velocity fluctuations. Recent attempts to test the 
theoretical predictions with the aid of light-scattering experiments are discussed. 
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1. I N T R O D U C T I O N  

The subject of fluctuations in nonequilibrium fluids has been reviewed by 
several authors. (~ 4) While many articles have appeared dealing with the 
theory of fluctuations in nonequilibrium fluids, the number of supporting 
experimental studies are rather limited. This article for the Festschrift in 
honor of E. G. D. Cohen is concerned with fluctuations in a fluid in the 
presence of a stationary temperature gradient, and in particular how they 
affect the Rayleigh spectrum as first predicted by Kirkpatrick e t  al. (s) 

To illustrate the significance of the subject, we begin with two 
quotations from Cohen's original review(l~: "In a fluid not in thermal 
equilibrium, long-range correlations between fluctuations exist, due to 
mode-coupling effects, that are absent in fluids in equilibrium. Light- 
scattering experiments can reveal these correlations." And: "In so far as 
these long-range correlations in a nonequilibrium fluid are the origin of the 
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so-called long-time tail contributions to the transport coefficients, which in 
turn are related to the non-existence of a virial or density expansion of the 
transport coefficients, light-scattering experiments of fluids not in thermal 
equilibrium give support for the reality of the above mentioned 
phenomena." Stimulated by these theoretical developments we have 
recently, together with R.W. Gammon, initiated an attempt to perform 
Rayleigh scattering experiments in a liquid in a stationary temperature 
gradient. (6,7) 

This article is organized as follows. In Section 2 we first give a brief 
review of dynamic correlations in equilibrium fluids alluded to in the above 
quotations and to which Cohen and collaborators have made some major 
contributions. In Section 3 we consider the theoretical prediction for the 
Rayleigh spectrum of a fluid in a large temperature gradient. Finally, in 
Section 4 we discuss to what extent we have been able to verify the 
theoretical predictions experimentally. 

2. D Y N A M I C  CORRELATIONS IN E Q U I L I B R I U M  FLUIDS 

The usual transport properties, such as self-diffusion, viscosity, and 
thermal conductivity, govern the decay of hydrodynamic fluctuations in 
equilibrium fluids. They are related to time integrals over molecular 
correlation functions/8) For dilute gases these properties are determined by 
the solution of the Boltzmann equation in which it is assumed that the 
molecules interact through uncorrelated binary collisions only. C9"1~ A 
theoretical framework to extend the Boltzmann equation to dense gases 
was proposed by Bogoliubov. m) The transport coefficients of moderately 
dense gases of molecules with short-range intermolecular forces were 
represented by power series in the density p in analogy to the viriat expan- 
sion for thermodynamic properties like the compressibility factor PV/RT. 
Formal expressions for the coefficients of this power series involving colli- 
sion sequences among successively larger number of molecules were derived 
by Cohen (~2'~3) and by Green and Piccirelli. (14) An alternative derivation of 
the density expansion of the transport properties was subsequently given 
by Zwanzig. (~5) In this approach it was believed that the dynamic correla- 
tion functions would decay exponentially fast with a relaxation time of the 
order of the time between molecular collisions. For larger times the 
r.esponse of the fluid to a gradient would be determined by the local 
hydrodynamic variables, namely density, velocity, and energy, with time- 
independent transport coefficients. 

The history of the discovery of the nonexistence of a virial expansion 
for the transport properties has been documented by Brush. (16) As far as 
one of the authors (J.V.S.) is concerned, it started when Dorfman at one 
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of his visits to the National Bureau of Standards reported that he and 
Cohen had noticed that the phase space associated with the collision 
sequences among four molecules that enter into the expression for the coef- 
ficient proportional to p2 diverges as In T, where r represents the time 
between the first and last collision/17) To evaluate the coefficients of the 
density expansion, one needs to consider a variety of collision sequences, 
some of them containing so-called noninteracting or hypothetical colli- 
sions, i.e., binary collisions that are prevented from occurring through the 
interference of a third particle/~8) An explicit evaluation of the triple-colli- 
sion integrals for a two-dimensional gas of hard disks confirmed the non- 
existence of a virial expansion for the transport properties. (19) It was argued 
that the maximum time z between collisions should not be allowed to go 
to infinity, but should be no larger than the mean free time, which is inver- 
sely proportional to the density p, so that the transport coefficients should 
have an expansion of the form (2~ 

i.t = #o + l q p  + td2p21n p + ~2p2 + . . .  (1) 

where the symbol # represents the viscosity q, the thermal conductivity 2, 
or the product pD,  where D is the coefficient of self-diffusion. The presence 
of a In p term in the density expansion was confirmed by a resummation 
of the most divergent terms of the original power series. (21 24) Similar 
results were obtained for special models, such as the Lorentz gas. (25 27) 

The static molecular correlations in a fluid extend over distances of the 
order of the intermolecular interactions. The breakdown of a virial expan- 
sion for the transport properties is due to the fact that the dynamic 
molecular correlations extend over distances at least as long as the mean 
free path or, equivalently, over times as long as the mean free time, which 
diverges as p ~ 0 .  Subsequent developments showed that the dynamic 
correlations in dense fluids even extend over times that are appreciably 
larger than the mean free time. Pomeau noticed that a resummation of the 
diverging density series for the transport properties does not lead to a finite 
result in the case of a two-dimensional gas (the two-dimensional Lorentz 
gas being an exception), indicating that in two dimensions linear gradient- 
independent transport coefficients do not exist. (28) The crucial observation 
was made by Alder and Wainwright, who from their molecular-dynamic 
studies of the velocity autocorrelation function for hard disks and hard 
spheres noticed a persistence of the molecular velocities associated with 
coherent vortexlike motions. (29) It was concluded that the velocity 
autocorrelation function does not decay exponentially as would be expec- 
ted for short-range dynamic correlations, but instead decays as t -d/2, where 
d is the dimensionality. Dorfman and Cohen were able to derive this result 
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on the basis of the kinetic theory of gases relating the effect at the 
molecular level to the same "ring" collision sequences that were earlier 
found to be responsible for the breakdown of the virial expansion for the 
transport properties. (24'3~ More generally, the unexpected long-time 
behavior of the molecular correlation functions was shown to originate 
from coupling among long-wavelength hydrodynamic modes, (31-33) the 
same mode-coupling effects that had earlier been found responsible for the 
anomalous behavior of the transport properties near the critical point. (34'35~ 

The presence of long-time effects in the dynamic correlations is now 
well established both from molecular-dynamic computations (29'36~41) and 
from theory, (3~ although consistency between theory and computations 
about the magnitude of the effects has been obtained only recently. (42-44) 
The upshot of this development is that there exists a mesoscopic time scale 
larger than the mean free time during which correlations exist which find 
their origin in the presence of mode-coupling effects that follow from the 
application of generalized hydrodynamics. 

The question arises as to what extent the above-mentioned 
phenomena have been confirmed from experiments with real fluids. Several 
investigators have tried to detect a term proportional to p2 In p in the 
density expansion of experimental transport coefficients. (4s 51) A problem is 
that the coefficients/~1 and #~ in the expansion (1) are only known for hard 
spheres (52"53) and not for a gas of molecules with realistic potentials. 
Moreover, the terms #;p2 In p and ~ 2 p  2 a r e  strongly correlated in any least 
squares fit. At best, all one can conclude from the more accurate studies is 
that the presence of a logarithmic term in the density expansion of the 
transport coefficients is not inconsistent with the data. (46'48'51) 

For a gas of hard spheres computer simulations have shown that the 
long-time tails in the velocity autocorrelation function lead to a significant 
enhancement of the diffusion coefficient D over the value D E predicted by 
the Enskog theory, which does not incorporate the effects of correlated 
collision sequences. (54) Hence, attempts have been made to obtain evidence 
for the existence of the dynamic correlation due to mode-coupling effects 
by comparing the density dependence of the experimental transport proper- 
ties with that predicted by the theory of Enskog. (55-58) However, since the 
actual molecules are not hard spheres, the need for assigning a reference 
hard-sphere system to specify the Enskog contribution introduces an 
appreciable uncertainty in the analysis. 

A more interesting approach is to study the correlations directly with 
neutron scattering or light scattering. Evidence for the presence of mode- 
coupling effects on the velocity autocorrelation function has been reported 
from neutron-scattering experiments in molecular liquids (59 63~ and in 
liquid sodium. (64-68) With light scattering the long-time behavior of the 
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velocity autocorrelation function of Brownian particles has been 
studied.(69 74) However, with light scattering it is ordinarily not possible to 
observe mode-coupling effects on any of the correlation functions in 
molecular fluids except in the vicinity of a critical point. ~75) The reason is 
that at the range of wave numbers accessible with light scattering the 
normal macroscopic hydrodynamic equations apply, leading to the well- 
known Rayleigh-Brillouin triplet in the light-scattering spectrum. The 
integrated scattering intensity is proportional to the compressibility, while 
the central Rayleigh line is a single Lorentzian whose linewidth is deter- 
mined by the macroscopic thermal diffusivity. (76'77) As illustrated by 
Cohen's remarks quoted in the introduction of this article, it does become 
possible to observe mode-coupling effects in molecular fluids with light 
scattering, when the fluid is brought into a nonequilibrium steady 
state. (1"78) It is this approach which we discuss in the remainder of this 
article. Specifically, we consider light scattering in a liquid subject to a 
large stationary temperature gradient. 

3. RAYLEIGH S P E C T R U M  OF A FLUID IN THE PRESENCE OF 
A T E M P E R A T U R E  G R A D I E N T  

Let a fluid be confined between two horizontal plates with different, 
but stationary, temperatures. Here we consider the case that the fluid layer 
is heated from above, so as to avoid the onset of any convective fluid 
motions. The system thus remains in a stable stationary state far away from 
any convective instability. In first approximation the presence of a tem- 
perature gradient in a fluid does not affect the Rayleigh spectrum, but 
causes an asymmetry in the Brillouin lines, since the propagating sound 
modes probe regions of different temperature. ~m,79-85) This effect, caused 
by long-range correlations parallel to the temperature gradient, is propor- 
tional to the temperature gradient VT. When the temperature gradient 
becomes large, the temperature begins to vary over distances probed by 
mode-coupling effects which become significantly enhanced and affect both 
the Brillouin lines (1'4,86,871 and the Rayleigh line. (1,4,5,88) The long-range 
correlations produced by these mode-coupling effects then become propor- 
tional to (VT) 2. Brillouin-scattering measurements from a liquid in the 
presence of a temperature gradient have been reported by two groups 
of investigators. (89 91) The interpretation of such Brillouin scattering 
experiments is complicated by effects from adjacent sound-absorbing and 
sound-reflecting walls. (87'92,93) As a consequence, only the linear small- 
gradient effect has been observed. (91) We thus focus our attention on the 
effects of the temperature gradient on the Rayleigh line, which are deter- 

822/57/3-4-8 
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mined by the large temperature-gradient effects directly yielding informa- 
tion on the long-range molecular correlations in the fluid itself. 

Kirkpatrick et al. (5) predicted the modifications to the shape of the 
Rayleigh line for a pure liquid in a steady-state temperature gradient using 
the methods of mode coupling and kinetic theory. They found that for a 
system removed from equilibrium by a large temperature gradient the den- 
sity-density time correlation function contains a local equilibrium heat 
mode contribution plus two nonequilibrium terms due to heat mode and 
viscous mode fluctuations; both nonequilibrium terms are proportional to 
(VT)2/k 4, where k, the scattering vector, is in a direction perpendicular to 
the temperature gradient VT. These predictions were confirmed by Ronis 
and Procaccia (88) on the basis of fluctuating hydrodynamics. Using the 
method of fluctuating hydrodynamics, we give here a simple derivation of 
the modifications to the Rayleigh spectrum, illustrating explicitly that they 
are related to a coupling between the entropy fluctuations and shear 
fluctuations. (8 8) 

The Onsager regression hypothesis (94) states that spontaneous fluctua- 
tions "regress" back to equilibrium according to the same relaxation equa- 
tions that describe the macroscopic relaxation processes. More recently, 
spontaneous fluctuations have been described by supplementing the relaxa- 
tion equations with Langevin random forces; the random forces represent 
the fast molecular processes which generate the fluctuations. (95) In thermal 
equilibrium the Rayleigh line is solely described by heat mode fluctuations, 
or, more specifically, entropy fluctuations. One might expect therefore from 
the Onsager regression hypothesis that the entropy fluctuations are com- 
pletely described by the heat transfer equation supplemented by a random 
heat flux with the additional condition that pressure fluctuations can be 
neglected to leading order; pressure fluctuations are associated with the 
sound modes (Brillouin lines). For a system removed far from equilibrium 
by a steady-state temperature gradient we must retain the macroscopic 
temperature gradient term in the heat transfer equation. 

The heat transfer equation, (9s) linearized in terms of the entropy, 
pressure, and velocity fluctuations and supplemented by a random heat 
flux g, is given by 

06s 1 
at DrV26S+~oo6U'VT Dr~ Po p--~o V �9 g --- 0 (2) 

where Po is the average mass density, To the average temperature, VT the 
externally imposed temperature gradient, Cp the specific heat at constant 
pressure, ar  the thermal expansion coefficient, Dr  the thermal diffusivity 
(=2/poCp), and 5s, 6p, and 5u are, respectively, the fluctuations in the 
specific entropy, the pressure, and the fluid velocity. The spatial variation 



Fluctuat ions in Fluids ou t  of Thermal Equilibrium 537 

of the transport coefficients is not considered, because this variation is 
negligibly small for experimentally accessible gradients and scattering 
vectors. (5'88) In a Fourier space and time representation this equation 
becomes 

Cp ~ r k 2 D  ~ 1 
i~176 ~ --r +t~o'oU--@- ik" gk, o9 -----0 

(3) 
To a first approximation, the Rayleigh line in the presence of a temperature 
gradient is determined by the coupling of the entropy fluctuations to the 
transverse velocity fluctuations but; that is, we can ignore pressure fluctua- 
tions and longitudinal velocity fluctuations which contribute to the 
Brillouin lines. This statement is justified rigorously in the Appendix. 
Hence, from (3), 

ik 'gk,~ cp6u, (~zT~ 
6sk,~o = - 

poTo(ico+k2Dr) To(ic~+k2Dr) , - - J  (4) 

The transverse velocity fluctuation 3u, is defined as 

6u, = au~,~ �9 (1 -/~/~).~ (5) 

where 1 is the unit tensor and where s is the unit vector in the direction 
of the temperature gradient 

dT 
- - . 7  

V T =  d z -  

From (5) it is readily seen that if the scattering vector k is parallel to the 
temperature gradient, then au t is zero, so that there is no effect on the 
Rayleigh line. For the converse case of k perpendicular to the temperature 
gradient, 6ut is a maximum. For simplicity we assume that k _L VT. Equa- 
tion (4) encapsulates all the physics of the Rayleigh line in the presence of 
a temperature gradient. The first term describes the equilibrium fluctua- 
tions whose decay rate depends upon the thermal diffusivity, while the 
second term demonstrates that the nonequilibrium enhancement is a conse- 
quence of the coupling of transverse velocity fluctuations to entropy 
fluctuations via the temperature gradient. The velocity fluctuations are 
obtained from the momentum equation {95) 

(*) Oau - V a p + r / V 2 6 u +  ~ + ~ t /  V ( V . a u ) + V . S  (6) Po ~t = 

where t/is the shear viscosity, ~ the bulk viscosity, and $ the random stress 
tensor. In k-~o space this equation takes the form 

ik 6pk,~ o 
ico 6uk, o~ k 2v 6Uk, o~-- (F--  v) k(k" 6Uk, o,) ik Se,~ (7) 

Po Po 
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where the longitudinal kinematic viscosity is F =  (~+4q/3)/po and the 
transverse kinematic viscosity is v = q/Po. The transverse velocity fluctua- 
tion (5) is deduced from (7) as 

5u, = ik .  Sk, o," (1 -/~/~) �9 
po( ico + k2v ) (8) 

which when substituted into (4) yields 

- i k "  gk, ~ cpik'Sk, o~'(1-fdc)'z {dT~ 
6sk,~ - Po To( ico + kZD T) + Po To( ico + k2v )( ico + k2D T) \ dz ] 

(9) 

The usual approximation made in nonequilibrium fluctuating 
hydrodynamics is that the random forces g and S, which represent the fast 
localized molecular processes, retain their local equilibrium correlations, 
which take the form (95) 

1 
(g~,o~ g~o~, ) = ~ ks  T~PoCpDT6~jf(k -- k') 5(co - co') (lOa) 

( S  ~ Sl,,,. kB To I 

x 6 ( k -  k') 6 (co-  co') (10b) 

. i  S j"  ) = 0  (10c) (,Sk,~ k',eo' 

From the correlations in the random forces, Eqs. (10a)-(10c), one can 
readily show that 

1 
- 87z4kBT~poCpDTf(k - k ' )  5 (co-  co') ( l l a )  

( /~"  Sk o~, �9 (1 --  /~/~) "-~'/~'  " Sk',~'* " (1  --  /~'k') ._~) 

-kBT~176 f(k-k')5(co-co') fo r  k,k'_L VT ( l i b )  
8rt  4 

Any asymmetries occur in the ~ direction, while in a plane perpendicular 
to VT (the scattering plane) spatial and temporal invariance holds, (88) so 
that k = k '  and co=co'. Therefore, from Eqs.(9) and (11) the entropy 
correlation function is given by 
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kBCpk2Dr 
( (~Sk, o ~ 6Sk*,o9 ) -- 87Z4po(O)2 + k4D 2) 

d 2 

X I1 4- ToDr((02 q- k4v2 ) for k L V T  (12) 

This equation agrees precisely with the form deduced by previous 
investigators. (5,88 

4. EXPERIMENTAL RESULTS 

The heterodyne-time correlation function, which can be determined 
with a photon-correlation experiment, is obtained from (12) by Fourier 
transforming in frequency space, 

C(t) = CB{1 + C~[(1 + AP) exp(--DT-q2t)- A exp(-vqZt)~ } (13) 

where we have included the background term C8, which accounts for static 
scattering from optical surfaces in the line of sight of the detector and 
where Ce is the signal-to-background ratio. The amplitude A in (13) is 
given by 

B(VT) 2 
A - q ~  (14) 

with 

B -  Cp (15) 
T(P 2 - 1) D~ 

P = v/D T = qCp/2 is the Prandtl number. An important point to note is that 
the viscous mode with a decay rate of vq 2 in (13) has a negative coefficient, 
thus decreasing the correlations at short times, We define an equilibrium 
diffusive amplitude aD(e)=Ce, a nonequilibrium diffusive amplitude 
aD(n)= CeAP, and a nonequilibrium viscous amplitude av (n )=-CeA.  
The two ratios 

and 

aD(n ) BP [VT[ 2 
aD(e) q4 

av(n ) B IVTI 2 
aD(e ) q4 

are thus independent of the geometry-dependent factor C~. 

(16) 

(17) 
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The presence of the q-4 term in the amplitude A implies that one must 
work at very small scattering angles (0<0.75 ~ ) in order to observe the 
enhancements for experimentally accessible gradients (VT~ 100K/cm). 
The experimental technique has been described previously, (6'?) while the 
results will be reviewed here. 

Typical experimental correlation functions for liquid toluene in a tem- 
perature gradient are plotted on a semilog graph in Fig. 1. Figure la shows 
the enhancement of the diffusive mode at long times for a scattering angle 
of 0=0.75 ~ and a temperature gradient of V T =  138 K/cm. The slight 
difference in slopes between the equilibrium correlation function (E) and 
the nonequilibrium correlation function (N) is due to the finite spread in 
experimental q values (finite collection angle), which affects the non- 
equilibrium correlation function to a greater extent than the equilibrium 
correlation function due to the q-4 dependence of the former/v) At shorter 
times (Fig. lb) the effect of the viscous mode with negative coefficient 
becomes evident; it decreases the correlation function at these shorter time 
scales. In order to account quantitatively for the finite spread in q values, 
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Fig. 1. Normalized experimental correlation function [ C ( t ) - C B ] / C  B obtained at a 
scattering angle of 0 = 0.75 ~ (a) Correlation function (N) of the nonequilibrium liquid with 
V T =  138 K/cm on a time scale where the heat mode dominates; corresponding correlation 
function (E) for the equilibrium liquid in the absence of a temperature gradient. (b) Correla- 
tion function of the nonequilibrium liquid at shorter times, where the influence of the viscous 
mode is observed. 



F l u c t u a t i o n s  i n  F l u i d s  o u t  of Thermal E q u i l i b r i u m  5 4 1  

we numerically convoluted the ideal correlation function (13) with a 
Gaussian beam profile. (6) In Fig. 2 the results for the diffusive and the 
viscous amplitude ratios, as defined by (16) and (17), are presented as a 
function of (VT)2/q 4. The experiment confirms the theoretical prediction 
that both amplitude ratios vary linearly with (VT)Z/q 4. The slopes of the 
lines in Figs. 2a and 2b yield, respectively, BP = (5.8 _+ 0.4) x 10  9 K -2 cm -2 
and B =  (0.81 _+0.08)x 10  9 K -2 c m  2. The ratio of the slopes determines 
the Prandtl number P = 7.2 + 1.2, which is in excellent agreement with the 
known value 7.12 for toluene at 26~ 

The one aspect of these data at variance with theory is the absolute 
magnitude of B. From the known thermophysical properties of toluene we 
calculate B =  1.5 x 10  9 K -2 c m  2, which is larger than our experimental 
value of 0.8 x 10  9 K 2 cm-2. It is suspected that the discrepancy is due to 
inhomogeneities in the temperature gradient between the hot and cold 
plates, so that we have insufficient information about the magnitude of the 
local temperature gradient at the scattering position. Hence, our 
preliminary experiments only enable us to assert the proportionality with 
(VT) 2. 

To investigate this matter further, we have constructed a modified 
nonequilibrium scattering cell which will enable us to measure the tern- 

an(n) 2o 

an(e) 1o 

o 

2 
a v (n) 

ao(e) 
1 

o i , j , i , i - -  
io 20 3o 4o 

[vT I ~ �9 
- (i0 -I0 K2cm ~) 

q~ 

Fig. 2. Ampl i tude  ra t ios  for the (a) thermal  and  (b) viscous modif ica t ions  to the Rayle igh  
line. Crosses,  q = 2360 c m - 1 ;  solid squares,  q = 1960 c m - t ;  open squares,  q = 1470 cm 1 The 

hor izonta l  e r ror  bars  indica te  the _+8 % error  in q4. Solid lines are the best fits to the data.  
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peratures closer to the top and bottom of the fluid layer. Initial results 
obtained with this improved scattering cell do appear to yield quantitative 
agreement between theory and experiment for the amplitudes as well. This 
work is still in progress and will be reported in a future publication. (96) 

A P P E N D I X  

In this Appendix we justify the statement that the Rayleigh line in the 
presence of a temperature gradient is determined to first order by the 
coupling of the entropy fluctuations to the transverse velocity fluctuations. 
The treatment closely follows the formulation of Schmitz and Cohen. (97~ 
The hydrodynamic equations take the general form (95) 

@ ~-7 + v. (pu)=o (A.~) 

(& ) (A.2) �9 = 2V T + aik 0x~ p T  ~ + u  Vs 2 , ~Hi 

] ( ) p - ~ + ( u . V )  u = - V p + t / V 2 u +  ~ + ~ t /  V(V.u) (A.3) 

where alk are the elements of the stress tensor. If we use the thermodynamic 
relations 

d p = p o ( Z r d p - - o ~ r d T  ) and d s = c p  d T - ~ r  dp (A.4) 
To Po 

where ZT is the isothermal compressibility, then Eqs. (A.1)-(A.3) can be 
expressed solely in terms of p, s, and u. Retaining only terms which are first 
order in the fluctuations, the time-dependent equations for the fluctuations 
6p, 6s, and 6u with wave vector k are 

~6____~s = _ cp 6u" V T o -  k2DTOS C~Tk2D~r 61) (A.5) 
~t To Po 

O6p = (7 -- 1 ) pok2Ov 3s - (7 - 1) kZDr6p + poc2ik �9 6u (A.6) 
Ot ST 

06u ik 
= - -  6p - k2v 6u - ( F -  v) k(k" 6u) (A.7) 

~t Po 
where c is the sound velocity and 7 = cp/c~. We express the velocity fluctua- 
tion 6u in terms of the longitudinal velocity 6ut, the transverse velocity 6u,, 
and the vorticity 6u~, where 

k x ( k x ~ )  kx_S 
6u = i6u,k -- 6u, k~ + i6u~ k~ (A.8) 
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with k~ = k2x + k 2, and 

i 
gul = - ~5 k" gu (A.9) 

gut = gu" (1 - kk)" 2 (A.10) 

gu~ = i2" (k x gu) (A.11) 

The vorticity is decoupled from the other variables, (97) while the coupling 
between 61), gs, gut, and 6u, is most conveniently expressed in terms of the 
following scaled variables: 

(~.~) 1/2 (poTo~l/2 
@' = @, as' = 6s \ C p /  
au' l = (po) 1/2 k but, gu', = (po) 1/2 gu, 

(A.12) 

Each variable has been scaled by the square root of its local-equilibrium 
correlation strength in order to give the scaled variables the same dimen- 
sion. Then 

(ax'~= (Hxx H~y\[6x'~ (6F'~] (A.13) 
e~\ay ' )  - < x  <,)l, 

where we have added random forces 6Fj and 6F/~ to the right-hand side 
and where 

and 

, /6s ' \  =[@,//% (A.14) ), 

Hx.= \Too) ~7 (A.15) 
I 0 k2v 

Hx,= \ to) ~ k -  (1.16) 
0 0 

HYx= ( (7-1)II2 ~) (A.17) 

k2r ') tA'8, 
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If we define the dimensionless small parameters ~1 and e2 as 

and 

kF'  
el= with F ' = D r ,  F ,v  (A.19) 

c 

1 r 
e2 = kLv  with L v -  (cp/To) a/2 dT/dz (A.20) 

then the matrices are of order 

Hxx, Hxy, Hyz = O(ekc) and Hyy = O(kc) + O(ekc) 

with e ~ 1. 
For the Rayleigh line, co~k2Dv= O(ekc), so that from (A.13) in the 

frequency domain 

im 6y' = -Hxy f i x ' -  Hyy fy'  + f C  (A.21) 

and to leading order fy'  = Hyy I fF'y. Using this value for ay' in the equa- 
tion for fix', one finds from (A.13) that 

i~o fix' = - H x x  6x' - HxyHL 1 fF'y + fF'x (A.22) 

where HxyHey l= O(e) and HxyHSy fF~ is negligible as compared to fF ' .  
Thus the Rayleigh line is given to leading order by 

ico fx '  = - Hxx fix'+ 6F'x (A.23) 

which implies that f x '  is decoupled from fy '  and the Rayleigh line is 
determined by the coupling of the entropy fluctuations to the transverse 
velocity fluctuations as specified by Eqs. (4) and (8) in the main text. 
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